DIAGRAMS OF CRITICAL EQUILIBRIUM FOR BRITTLE
BODIES WITH SHARP FLAWS

L. L. Libatskii and V. V. Panasyuk

Certain forms of the stress-intensity factors close to the tips of sharp flaws (plane prob-
lem) are used as the basis of a method for plotting critical equilibrium diagrams for
brittle bodies with flaws in the form of pointed cavity-cracks [5]. Concrete examples are
discussed, mainly in the context of such diagrams, for a brittle body weakened by 2 circu-
lar cavity flaw with a crack leaving the edge of the flaw. Determination of the stress-in-
tensity factors for this problem is based on approximate solution of an integral equation
by the method of collocations. Plots of some familiar diagrams are also analyzed.

1. Equations of the Critical Stress Diagrams. Consider a two-dimensional brittle body weakened by
sharp stress raisers (with cusps of the first kind). Let the raisers be so far apart that their interaction is
negligible. Let the origin of polar coordinates r, ¢ be located at the tip of one raiser, with 9 measured
from the tangent to the raiser contour at the tip. Then the component T of the elastic fracture stresses in
the neighborhood of the tip (i.e., with r small) can be written as [1-5]

6(,:_;‘/’_; +0@1), N=1,V2c0s20/2(kcos0/2— 3k,sin6/2) 1.1)

Here, ky and k; are the stress-intensity factors due respectively to the symmetric and antisymmetric

(relative to the tangent at the raiser tip) parts of the external load, and O(1) is the part of the stress com-
ponent that is bounded as r —0.

The body reaches its critical equilibrium state when [2, 3, 5]
Nmax=K/n (K is modulus of cohesion) (L.2)

Let the body be loaded "at infinity" by two mutually perpendicular stresses p and g (p = ), in such a
way that p forms an angle o with the tangent at the raiser tip. With this type of external load and the class
of stress raiser in question, the stress-intensity factors can be written as

ki=1{p T 9h — (p — fycos 2a, &, = (p — g)f, sin 2a (1.3)

where f4, f9, and f3 are functions of the geometric parameters of the raiser (it will be assumed !
henceforth for simplicity that f; > 0 and f, > 0).

Substituting (1.3) in (1.1) and equating the derivative 8N/8a to zero,

tg2a = (3f5/ f,) tg0/,
Hence

cos % — facos0/2
08 o6 j:VBiaﬁsimB/Z-Hz?cos?B/Z o

Using (1.1), (1.3), and (1.4), the second derivative N/8a? is seen to be negative if the lower sign is
taken in (1.4) (and in the similar expression for sin 2a). The expression for the maximum of N as a func-
tion of « is then
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NGhx= Y4 (1 4 cos8) [(p + ) [V T +c050 -+ (p— q)V 2 (4 — B cos 0)]
24 = 9fg* + f,?, 2B = 9f? — f,?

Now consider the extremum of (1.5) as a function of . Equating the derivative ngg‘X/ dg to zero,

(1.5)

Sin9[3(p+q)fll/1 +cosB+V§(p~q)2A—ﬁ%%]=0 (1.6)

Equating the first factor on the left of (1.6) to zero yields ¢ = 0 (the values ¢ = =7 are discarded
from physical considerations). With this value of g, the second derivative will be negative if

Fp.g) = lflfy + f) — 8f%lp + [folfy — fo) + 3fs2lg >0 1.7)

Assuming that condition (1.7) is satisfied, and putting ¢ = 0 in (1.5),
NG = "%V2( + f)p + (f, — f)) (1.8)

Equating to zero the expression in brackets on the left of (1.6) gives
0030 = = {(4 — B) F1 +4B* (p— q)" + (4 + B) Fy) 1.9)

where
Fy=8B(p — )" + 3(p + @Pfi®, Fy=6BI2B(p — g)* + (p + )%’

Fo=p+9)HLVI0P+ 9%+ 16B (p— g)

and the absolute value is considered under the square root sign. For the values of g given by (1.9), the
second derivative der(ga),x /d@? will be negative if

Fp.g) <0
where the function F is given by (1.7). Substitution of (1.9) for cos ¢ in (1.5) gives

N = (A+ B2 {ip 4 ) 1, (7Y

+ -0 (B —4B(p—qr — R)"} (1.10)

The critical equilibrium condition (1.2) may thus be written in the form of two equations:

(it Fpat im0y = V2K, Fpyr 2)>0 (t.11)
sy, FrFy F1+Fy
(4+ Byt 2L (o + 00 1o (B
+ (ps— 0) (3 (F1 —4B (pa — 4. = F] )} VZK F Py q4) <0 (1.12)

Here, px and g4 are the least values of the external stresses for which (1.2) is satisfied (the critical
stresses [5, 6]). Equations (1.11) and (1.12) define a line in the pq plane, termed in [5] the critical stress
diagram,. Obviously, if g = p, the diagram is simply reflected in the bisector of the first and third quad-
rants. If the stressed state in a body with the type of flaws in question is such that the point with coordi-
nates p, ¢ lies inside the region bounded by the diagram (i.e., is located on the sample side as the origin
of the pOg coordinate system), the safety factor in the body will be greater than unity; otherwise, it is less
than unity. If the point (p, g) lies on the diagram, the equilibrium state of the body is critical in the sense
that the slightest additional load (taking the point into the outer region) will cause fracture to commence.

It is more convenient to plot these strength diagrams in the relative coordinates
a®=plos, ¥=gq/os

where o is the engineering strength of the body, which will be assumed {5] equal to the least critical ex-
ternal load o = px (g« = 0) in the case of one-sided extension of the body.

2. Analysis of Plots of Some Familiar Diagrams. 1. Let the body be weakened by isolated straight
narrow slit-cracks of length 2 I, In this case,
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0 f1=f2=f3=1/2]/-l-

Y
/ éﬂ Substitution of these values in (1.12) with g, = 0 gives
Px=03=09T3"1 Y2/IK (2.1)
Recalling (1.12), it can now be seen that, in the first quadrant, from the
0 ! z*° line y° = x° to the line y° = x°/3, the strength diagram is likewise a straight line:
A x° =1.03.
4’7%[ By using (1.12) and (2.1), sufficient points can be obtained for plotting the
-4 curved part of the diagram. For instance, with s; = g, /py = —1, the point with
//I coordinates x7=—0.79,y]=—0.79 is obtained, and with s, = —4, the point x§ = 0.43,
ys = 0.43, ys = —1.,73, The diagram cuts the y° axis at y§ = —2.67. The diagram
A / / I plotted on the basis of this working is represented by curve 1 of Fig. 1, Notice
K y I that the diagram for the same case was plotted by another method in [6].
y 2. If the flaws in the body consist of hypocycloidal cavities [7], it is found,

after eliminating some misprints from (7], that

_ (nt+D2+nt4n—t
hh=—f BT (ntO—t—nF1

[ D PIR: Ll it it ol i L it o
fa=2f (MP—n+ 4 +4n—2)t+n*—3nt+4
I fs__:_f(6:3——(10—n)t2—(n2+2)t—,’—2(n—1) 2.2)

nte— -4t 4-b(n—2jt 4 n2—3n+4

3 z f_n—}—t——i( (—tla Ya ,_2—(—2g)n
-5 - n \(n+1)t+n-—1) : T 24 (l—o)n
I e=bla (n"z <8<1>
5 where n = 3 is the number of vertices, and a and b are the radii of circles cir-
cumscribed about and inscribed in the flaw.
Fig. 1

A variety of flaws consisting of sharp hypocycloidal cavities may be ob~
tained by varying n and €. The critical stress diagram for each concrete case of
n and € is obtained by using (2.2) and the method described.

a) Letn=3. Withe = 1/3, the diagram for a hypocycloid is obtained [6]. In the x°Oy° coordinate
system it is the same as curve 1, Using (1.12) and (2.2}, it can be shown that, when n = 3, the body has
maximum strength under one-sided compression when € = 0.58. In this case, fi, f5, and f3 take the values

f1=0.456Va, f,=0.537 Ve, f=0126Va (2.3)
Hence, recalling (1.8) and (1.12),
Py=0p=1.006a"} 2 aK (2.4)

In the first quadrant of the x°y° coordinate system, and up to the line y° = —107x° in the fourth guad-
rant, the strength diagram is now given by

2 — 0.08155° = 1 2.5)

Using (1.12), (2.3), and (2.4), (x§ = 0.076, y{ = —11.33) is obtained with 8; = —150, and (x3 = 0.052,
ys = —11.66) with s, = —250,

The y° axis cuts the diagram at the point y§ = —12.16. The critical stress diagram plotted from these
data is represented by curve 2 of Fig, 1.

As € increases up to 1, diagrams are obtained approximating to the diagram for a circular flaw [13]
(curve 4 of Fig. 1.

b) Letn =4. In this case the body has maximum strength under one-sided compression if the flaws

in it are characterized by the parameter & = 0.57. The strength diagram for this body is given in the first
and fourth quadrants by

z° — 0.201y° =1
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y The relevant diagram is marked 3 in Fig. 1. As in case a), diagrams
y LI/ A approximating to the diagram for a circular flaw are obtained as ¢ —1.

3. Critical Stress Diagrams for a Circular Hole Plus Crack Type

’L of Flaw. 1. Let the flaws in the body be represented by a circular hole of
T

radius b and a crack of length 21, issuing from the hole boundary (Fig. 2).
From [8-10], the problem on the stress-deformed state in a body with flaws
of this kind may be reduced to solving the following system of two singular

7777 integral equations:

Fig. 2 2D\ 0, @, ) wi () dn + AP €)= 0

0
G . , (3.1)
=rarn: =12

D

Here, G is the shear modulus, ® = 3-4v or ® =(3 — V)/(1 +v) respectively in the cases of plane defor-

mation or the plane stressed state, ¥ is Poisson's coefficient, and AP = O'(P), AP =70 are respectively

the normal and tangential components of the stresses due to the external load at the sité of the crack when
the plate is weakened solely by the circular hole. The kernels M; of integral equations (3.1) are given by

_ 1 ML AE) [ 1 1 2(1 — AE)
M= = + el i [1+(1+xa)<1-xn) I}
SN P (3% N 1 (£
TTE TrmrD [T~ nre
_ 1 8AZE 2(1 — AE - A%E?) 1—AE
My=s=g + armra=m | T i 3-2)
SRS B N S
TFrm e | 470 ATFEILT R T TR
g° ° 21
(.A':Z—i—e"’ & =T)
If the solutions of (3.1) are sought in the form [10]
1 k. =z :
; BT —— e L /1 — (n -
t= = (e VT D) e 3.3)

it can be shown that the stress concentration in the neighborhood of the length of the crack is character-
ized by

— k __k?_ '
Oy = V‘i"j +0(1)7 Tay = VZTO(i)

where o, is the normal, and T the tangential component of the stress in the plate having a circular hole
and crac¥<. Substituting from (?ZS) and (3.1) for u is

k, D
e 1 4 D) a1 = AP

x V22 +e) =
)] 1
i B — 3.4
19 &, n)=SMi—%, I%’(E,n)=Sn“ VIi—aMdn =010 64
0 Vi_—n 0

Collocations are used to find the coefficients k; and ar(li), i.e., (3.4) is assumed to be satisfied at
m + 2 points of the interval 1 = £ =1 +¢&°, The coefficients are then found by Cramer's rule (see, e.g.,
[11]). If the numerators in Cramer's expressions are expanded in elements of the first column, the co-
efficients k; can be written in the form

_ miy
A VUZ+e ;
b= 2VACESD 2 AP 4f (3.5)

where §; are the points of collocation, A(i) is the determinant of the system of equations obtained from
(3.4), and Aj(_jl) are the cofactors of the elements of the first row of this determinant.
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Using the familiar solutions [12], it may be found that, on the line of the crack, for the type of loading
in question (see Section 1),

o = ! [(p +9 (1 + %)— p—q ("1 + %) cos 2:;]

2
1 2 33 o 144 {(3.6)
rgcg):T(p—q)<1+?-——xI>5m2x (x;i_’}ia>
Using (1.4), (3.5), and (3.6),
mae 2 L
kg 4 o 1 Agl) 1 5o 3 A(l'
fy=—5V 20¢ 12(14";]5>A71, f2:*2“1/2“5 ]221<i+;;-4_>73—(%
& e 8.7)

a4 5 2 35
fo= g VB 3 (14— )T

where a =b + I is the radius of the circle circumscribed about the flaw.

2. In the present calculations, we shall confine ourselves to the value m = 1 and take §; = 0.25,.52 =
0.625, and &3 = 1 as the points of collocation, Withe® = 0.4 (A < 0.167), the ratios of the cofactors Afjl) to
the corresponding determinants A can be written up to At as

AR 1 AW = 0.114 — 0.479 A - 1.569 A* — 5.132 A% + 15.972
AR AW =0.032 4+ 04314 — 0.569 A% + 1.802 A% — 5.708 A%
AF 1 AD = 0103 — 0.143 & + 0.463 A2 — 1.546 A% L 4.792 M4

(3.8)
AR | A® = 0114 — 0.210A + 0.078 A% - 0.006A% - 0.010 A2

AD [ A® = 0.032 4 0.074 & + 0.100 A2 — 0.011 A* — 0.006 A*
A2 ] A® = 0.103 — 0.062 4 + 0.020 2> — 0.0002 - A% — 0.0092¢

Withe{ = 0.01, (3.7) and (3.8) give
f1=0109Va, f,=0.215Va, f3=0003V4a

As might be expected, the corresponding diagram is virtually the same as the line 4 of Fig. 1, re-
ferring to a plate with circular flaws [13].

With €3 = 0.33, we get

F1=0.436Va, [f,=0646Va, f;=0.242 Ve
In this case virtually the same diagram is obtained as for the flaw considered in Section 2, 2b.
Finally, in the case&§ =1, (3.7) gives

f1=0496Va, f,=0505Va, f,=0483Va

which is virtually the same as the diagram for a plate with a crack (curve 1 of Fig. 1), i.e., the hole no
longer seriously influences the process of crack development.
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