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B R I T T L E  

Certain forms of the s t r e ss - in tens i ty  factors  close to the tips of sharp flaws (plane prob- 
lem) a re  used as the basis of a method for plotting cr i t ical  equilibrium diagrams for 
bri t t le  bodies with flaws in the form of pointed cav i ty -c racks  [5]. Concrete examples a re  
discussed,  mainly in the context of such d iagrams,  for a bri t t le  body weakened by a c i rcu-  
lar  cavity flaw with a c rack  leaving the edge of the flaw. Determination of the s t r e s s - i n -  
tensi ty factors  for this problem is based on approximate  solution of an integral equation 
by the method of collocations.  Plots of some famil iar  d iagrams a re  also analyzed. 

1. Equations of the Cri t ical  Stress Diagrams.  Consider  a two-dimensional  br i t t le  body weakened by 
sharp s t r ess  r a i s e r s  (with cusps of the f i rs t  kind). Let the r a i s e r s  be so far apart  that their  interaction is 
negligible. Let  the origin of polar coordinates r ,  0 be located at the tip of one r a i s e r ,  with 0 measured  
f rom the tangent to the r a i s e r  contour at the tip. Then the component ~0 of the elastic f rac tu re  s t r e s ses  in 
the neighborhood of the tip (i.e., with r small) can be wri t ten as [1-5] 

N 
zo = "~ r  + 0 (t), N = 1/3 ] /2  cos ~ 0 / 2 (kl cos O / 2 --  3k2 sin 0 / 2) (1.1) 

Here, k 1 and k 2 a re  the s t r e s s - in t ens i ty  factors  due respect ively  to the symmet r i c  and an t i symmetr ic  
(relative to the tangent at the r a i s e r  tip) parts  of the external load, and O(1) is the part  of the s t ress  com-  
ponent that is bounded as r -~ 0. 

The body reaches  its c r i t ica l  equilibrium state when [2, 3, 5] 

Nmax = K/r~  (K is modulus of cohesion) (1.2) 

Let the body be loaded nat infinity" by two mutually perpendicular  s t r e s ses  p and q (p >- q), in such a 
way that p forms an angle a with the tangent at the r a i s e r  tip. With this type of external load and the c lass  
of s t r e s s  r a i s e r  in question, the s t r e s s - in t ens i ty  factors  can be wri t ten as 

kl = (P -~ q)]l - -  (P - -  q)f2 cos 2a, kz : (P - -  q)fa sin 2c~ (t.3) 

where f l ,  f2 ,  and f3  are  functions of the geometr ic  pa rame te r s  of the r a i s e r  (it will be assumed i 
henceforth for s implici ty that f l  > 0 and f2 > 0). 

Substituting (1.3) in (1.1) and equating the derivative 8 N / O a  to zero,  

Hence 
tg2a = (3[~ / h) tg0h 

hcosO/2 
c o s  2cz = _4=_ ~ O~.a ~ sin~ 0 / 2 + h ~ cos~ 0 7 ~  (1.4) 

Using (1.1), (1.3), and (1.4), the second derivat ive 02N/Sa 2 is seen to be negative if the lower sign is 
taken in (1.4) (and in the s imi la r  express ion for sin 2~). The express ion for the maximum of N as a func- 
tion of a is then 
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N(mlx = lla (1 ~- cos0) [(p 2 F q)/1V~ ~- cosO + ( p - q ) V 2  (A -- B cos 0)1 

2A ---- 9/a ~ + / 2 ,  2B = 9/~ 2 -  ]2 z 

Now consider  the ex t remum of (1.5) as a function of 0. Equating the derivative dN(m~)x/d0 

[ 2 A - - B - - 3 B c ~  
sin 0 3 (p + q) ]~ ] / t  + cos 0 + ~ 2  (p -- q) IrA -- B cos 0 

Equating the f i rs t  factor  on the left of (1.6) to zero  yields 
f rom physical  considerat ions) .  With this value of 0, the second 

F(p,q) = [/2(f~ + f~) --  3/321p + []~(]1 --  

where 

is) + 3la2lq > 0 

Assuming that condition (1.7) is satisfied,  and putting 0 = 0 in (1.5), 

N(1) 1/2V~(/1 +/2)P + (]1 --/~)q] max ----- 

E q u a t i n g  to zero  the express ion in brackets  on the left of (1.6) gives 
t cos 0 = ~ {(A --  B) F1 + 4B ~ (p --  q)~ + (A + B) F~} 

(1.5) 

to zero,  

(1.6) 

0 = 0 (the values 0 = +~r a re  discarded 
derivative will be negative if 

(1.7) 

F~ = 8B(p --  q)2 -t- 3(p A- q)~/1 ~, Fa = 6B[2B(p --  q)2 + (p + q)~f 2] 

F2 = (p -4- q) ]~ ],/9 (p + q)~]l 2 .~ t6B (p -- q)2 

(1.s) 

(1.9) 

and the absolute value is considered under the square  root sign. For  the values of 0 given by (1.9), the 
second derivat ive d2N~Jax/d02 will be negative if 

F(p,q) < 0 

where the function F is given by (1.7). Substitution of (1.9) for cos 0 in (1.5) gives 

N(~) = (A "t- BY/, F1 + F, {(p + q)/1 ( F, + F, \V, 
m,x , 4F8 k---fU-~ ) 

(1.10) 
+ ( p - - q ) ( ~ ?  [ F 1 - 4 B  ( p - - q ) ' - -  F~]) v'} 

The cr i t ica l  equil ibrium condition (1.2) may thus be writ ten in the form of two equations: 

V2K (1.11) ( I I+ i s )  P * ~ : ( f l - - f ~ ) q * =  ~ , F (p , ,  q , ) > 0  

FI + F, ; (p,  + q,) h fF~ + F, 'if, (A + B)'/, 
21f~F8 [ \ F~ l 

! 2B - -4B \ /  r (1.12) Y (p,, q , ) < 0  

and q,  a re  the least  values of the external s t r e s ses  for which (1.2) is satisfied (the cr i t ical  Here, p.  
s t r e s s e s  [5, 6D. Equations (1.11) and (1.12) define a line in the pq plane, t e rmed  in [5] the cr i t ical  s t r e s s  
d iagram.  Obviously, if q -> p, the d iagram is s imply reflected in the b isec tor  of the f i rs t  and third  quad- 
rants .  If the s t r e s sed  state in a body with the type of flaws in question is such that the point with coordi-  
nates p, q lies inside the region bounded by the d iagram (i.e., is located on the sample side as the origin 
of the pOq coordinate system}, the safety factor  in the body will be g rea t e r  than unity; otherwise,  it is less 
than unity. If the point (p, q) lies on the diagram, the equilibrium state of the body is cr i t ical  in the sense 
that the sl ightest  additional load (taking the point into the outer  region) will cause f rac ture  to commence.  

It is more  convenient to plot these s t rength d iagrams in the relat ive coordinates 

x ~  y~ B 

where cr B is the engineering s t rength of the body, which will be assumed [5] equal to the least cr i t ical  ex- 
ternal  load ~B = P* (q* = 0) in the case  of one-sided extension of the body. 

2. Analysis of Plots of Some Fami l ia r  Diagrams.  1. Let  the body be weakened by isolated straight  
narrow s l i t - c racks  of length 2 l. In this case,  
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, ~ ~  Subs t i tu t ion  of  t h e s e  v a l u e s  in (1.12) wi th  q .  = 0 g i v e s  

7 P ,  = aB ---- 0.97n -I  1/ '~/ / /g  (2.1) 

! R e c a l l i n g  (1.12), i t  can  now b e  s e e n  tha t ,  in t he  f i r s t  q u a d r a n t ,  f r o m  the  
g t _x~ l ine  y~ = x ~ to  the  l ine  yo = x o / 3 ,  t he  s t r e n g t h  d i a g r a m  is l i k e w i s e  a s t r a i g h t  l ine:  

x ~ = 1.03.  

By us ing  (1.12) and (2.1), su f f i c i e n t  po in ts  can  b e  o b t a i n e d  fo r  p lo t t ing  the  
- j  c u r v e d  p a r t  of  the  d i a g r a m .  F o r  i n s t a n c e ,  wi th  s t = q , / p ,  = - 1 ,  the  point  wi th  

c o o r d i n a t e s  x~ = - 0.79, y~ = - 0.79 is  o b t a i n e d ,  and wi th  s 2 = - 4 ,  t he  po in t  x~ = 0.43, 
y~ = 0.43, y~ = - 1 . 7 3 .  The  d i a g r a m  cu ts  t he  y~ ax i s  a t  y~ = - 2 . 6 7 .  The  d i a g r a m  
p lo t t ed  on the  b a s i s  of  th i s  w o r k i n g  is  r e p r e s e n t e d  by  c u r v e  1 of F i g .  1. Not ice  

-2 t ha t  t he  d i a g r a m  fo r  the  s a m e  c a s e  was  p lo t t ed  b y  a n o t h e r  m e t h o d  in [6]. 

2. If t he  f l aws  in t he  body  c o n s i s t  of  h y p o c y c l o i d a l  c a v i t i e s  [7], i t  is found, 
a f t e r  e l i m i n a t i n g  s o m e  m i s p r i n t s  f r o m  [7], tha t  

-3 
(n-~- l)  t~-~- nt  2r- n - -  i 

/ 1 = - - f  t ~ - ( n - 4 - 1 ) t ~ - t - - n + t  
f~ = 2/ 3nt3 § (n~ + 2) t~ + (n 2 -  4) t ~ n ~ - -  3n @ 2 

(n ~ -  n +  4) t 2 -~  4 ( n - -  2) t + n 2 - 3 n +  4 

6t ~ - -  (10 - -  n) t ~ - -  (n ~ + 2) t + 2 (n - -  i )  (2.2) 

n @  t - -  i , ' ( n +  1) ' 2 +  ( i - - e )  n -5 / "~ i---~ ~ - -  ( t = 

8 = b / a  < ~ 8 < ~ t  

s w h e r e  n - 3 is  t he  n u m b e r  of  v e r t i c e s ,  and a and b a r e  the  r a d i i  of c i r c l e s  c i r -  
c u m s c r i b e d  about  and i n s c r i b e d  in t he  f law.  

F i g .  1 
A v a r i e t y  of f l aws  c o n s i s t i n g  of s h a r p  h y p o c y c l o i d a l  c a v i t i e s  m a y  b e  ob -  

t a i n e d  by  v a r y i n g  n and e .  The  c r i t i c a l  s t r e s s  d i a g r a m  for  e ach  c o n c r e t e  c a s e  of  
n and e is  o b t a i n e d  by  us ing  (2.2) and  the  me thod  d e s c r i b e d .  

a) L e t  n = 3. Wi th  e = 1 / 3 ,  the  d i a g r a m  for  a h y p o c y e l o i d  is  o b t a i n e d  [6]. In the  x~ ~ c o o r d i n a t e  
s y s t e m  i t  is  the  s a m e  a s  c u r v e  1. Us ing  (1.12) and (2.2), i t  can  be  shown tha t ,  when n = 3, the  body has  
m a x i m u m  s t r e n g t h  unde r  o n e - s i d e d  c o m p r e s s i o n  when e = 0.58. In th i s  c a s e ,  f i ,  f2 ,  and f3  t a k e  the  v a l u e s  

]~ = 0.456 ]/-~, ]2 = 0.537 )f~,  /~ = 0.126 ] / a  (2.3) 

Hence ,  r e c a l l i n g  (1.8) and (1.12), 

p ,  = ~ ,  = i . 0 0 6 ~ - ~  l f 2 - ~ g  (2 .4 )  

In the  f i r s t  q u a d r a n t  of  t he  x~ ~ c o o r d i n a t e  s y s t e m ,  and up to  the  l ine  y~ = - 1 0 7 x  ~ in the  fou r th  quad -  
r a n t ,  the  s t r e n g t h  d i a g r a m  is  now g iven  by  

x ~ - -  0.0815y ~ = I (2.5) 

Us ing  (1.12), (2.3), and  (2.4), (x[ = 0.076, y[ = - 1 1 . 3 3 )  is  o b t a i n e d  wi th  s 1 = - 1 5 0 ,  and (x~ = 0.052, 
y~ = - 1 1 . 6 6 )  wi th  s 2 = - 2 5 0 .  

The  y~ ax i s  cu t s  t he  d i a g r a m  a t  t he  po in t  y~ = - 1 2 . 1 6 .  The  c r i t i c a l  s t r e s s  d i a g r a m  p lo t t ed  f r o m  t h e s e  
d a t a  is  r e p r e s e n t e d  by c u r v e  2 o f  F i g .  1. 

As e i n c r e a s e s  up to 1, d i a g r a m s  a r e  ob t a ined  a p p r o x i m a t i n g  to t he  d i a g r a m  fo r  a c i r c u l a r  f law [13] 
( c u r v e  4 of  F i g .  1). 

b) L e t  n = 4. In th i s  c a s e  t he  body  has  m a x i m u m  s t r e n g t h  unde r  o n e - s i d e d  c o m p r e s s i o n  if the  f laws 
in i t  a r e  c h a r a c t e r i z e d  by  the  p a r a m e t e r  e = 0.57. The  s t r e n g t h  d i a g r a m  for  th i s  body  is g i v e n  in the  f i r s t  
and  f o u r t h  q u a d r a n t s  by  

x ~ 1 7 6  
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Fig.  2 

The r e l evan t  d i a g r a m  is m a r k e d  3 in Fig .  1. As in c a s e  a), d i a g r a m s  
approx ima t ing  to the  d i a g r a m  fo r  a c i r c u l a r  flaw a r e  obtained as c ~ 1. 

3. C r i t i c a l  S t ress  D i a g r a m s  fo r  a C i r c u l a r  Hole Plus  C r a c k  Type  
of  F law.  1. Le t  tlae f laws in the  body be r e p r e s e n t e d  by a c i r c u l a r  hole of 
rad ius  b and a c r a c k  of  length 2l, i ssuing f r o m  the hole boundary  (Fig. 2). 
F r o m  [8-10],  the  p rob l em on the  s t r e s s - d e f o r m e d  s ta te  in a body with f laws 
of  this  kind m a y  be r educed  to  solving the following s y s t e m  of two s ingu la r  
in tegra l  equat ions:  

1 

20 f/ll~ (~, ~) la~ 01) d~l -{- A~ ~') (~) = 0 
0 

a (3 .D 
D = ~ (t + • i = t , 2  

Here ,  G is the  s h e a r  modulus ,  n = 3 -4v  o r  n =(3 - v)/(1 +v) r e s p e c t i v e l y  in the  c a s e s  of  plane de fo r -  
ma t ion  o r  the plane s t r e s s e d  s ta te ,  v is P o i s s o n ' s  coef f ic ien t ,  and A~P) = qv(P), A~P)= T(xP) a r e  r e s p e c t i v e l y  
the  n o r m a l  and tangent ia l  componen t s  of the  s t r e s s e s  due to the  ex te rna l  ldad at the sit~Zof the c r a c k  when 
the plate  is weakened  so le ly  by the c i r c u l a r  hole.  The  ke rne l s  M i of in tegra l  equat ions (3.1) a r e  g iven by 

n + ~ 0 -~--Z~(~ ~- ~) L ~ + ~ n--~ -~- ]J 
M~ -- l 8;~r [2 (i -- ~r + Z~r ~) I -- ~r (3 2 )  

,, ~ 2 + ~ o  , 

If the  so lu t ions  of  (3.1) a r e  sought  in the f o r m  [10] 

~li = - -  ~ n V 21 (2 + 8 ~ (t - ~l) ~- a ~ ) n  ~ 0 = ~, ~) ( 3 . 3 )  

it can  be  shown that  the  s t r e s s  c o n c e n t r a t i o n  in the  ne ighborhood  of  the  length of  the c r a c k  is c h a r a c t e r -  
ized by  

k, + o ( i )  

w h e r e  e y  is the n o r m a l ,  and Txy the  t angent ia l  componen t  of  the s t r e s s  in the plate  having a c i r c u l a r  hole 
and c r a c k .  Subst i tut ing f r o m  (3.3) and (3.1) f o r / Q ,  

zn  

k~ i(ko+ ~ _(i)r(~) ~(p) 
g ]/-2/(2 +e  ~ n=0~ In = l~i 

dn I(~ i) (~, ~l) = Tl" ] / t - -  n M i d  q (n = o, l , . . )  I(2 (~, n)= M, V~--~' 
0 0 

Col loca t ions  a r e  used to find the coef f ic ien t s  k i and a(ni) , i .e . ,  (3.4) is a s s u m e d  to be sa t i s f ied  at 
m + 2 points  of the  in t e rva l  1 - ~ -< 1 + co. The  coef f ic ien ts  a r e  then found by C r a m e r ' s  ru le  (see,  e .g . ,  
[11]). If the n u m e r a t o r s  in C r a m e r ' s  e x p r e s s i o n s  a r e  expanded in e l ement s  of  the f i r s t  column,  the c o -  
ef f ic ients  k i can  be  wr i t t en  in the  f o r m  

_ _  m - ~ 2  

kr a V ~ - ( 2  + eu) ~ ,  A!p)  �9 (3.5) 
A<~) (~j) Ai~ ) 

w h e r e  ~j a r e  the points  of  co l loca t ion ,  A (i) is the d e t e r m i n a n t  of  the s y s t e m  of equat ions obtained f r o m  
(3.4), and A ~  ) a r e  the c o f a c t o r s  of the e l emen t s  of  the f i r s t  row of this  de t e rminan t .  
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Using the famil iar  solutions [12], it may be found that, on the line of the crack,  for the type of loading 
in question (see Section 1), 

o s =  [(. + + § 

~ = - 2 - ( p - - q )  I + ~- z~ ,, = ~ - ~ U  
(3.6) 

Using (1.4), (3.5), and (3.6), 

m+~, A(1) m+2( ' ~ A~ ) n ( ) 

;=: , j=~ , 
'm +-,2 

i=i xJ'Z 
(3.7) 

where a = b + l is the radius of the c i rc le  c i rcumscr ibed  about the flaw. 

2. In the present  calculations,  we shall confine ourselves  to the value m = 1 and take ~1 = 0.25, ~2 = 
0.625, and ~3 = 1 as the points of collocation. With ~~ -< 0~ (k < 0.167), the ratios of the cofactors  A~ i) to 
the corresponding determinants  A(i) can be wri t ten up to ~4 as 

~ J  

A(1)/ A(:) 0.114 0.479 ~. + t.569 ~ 5A32 ~3 + t5.97~ 
A(:)/ A(~ 0.032 + 0.13IX 0.569 ~2 + 1.802 U 5.708 X~ 
A(~) / 5(~) 0.t03 0.t43 X + 0.463 ~2 1.540 X~ + 4.792 X4 1 3  ~ - -  

(3.8) 
A~)  / h(2) = 0.1t4 -- 0.210~ + 0,078 )d + 0.006U + 0.010 M 
A~ ) / A(~) = 0.032 + 0.074 )~ + 0A00 ~ -- 0.011 ~s _ 0.006 ~4 
A(~) / A(2) 0A03 0.062 ~ + 0.020 ~2 0.0002 ~s 0.009M 1 3  ~ . . . .  

With ~ ~ = 0.01, (3.7) and (3.8) give 

/1 = o . i o 9  = ( d ,  = 0 .003  V a  

As might be expected, the corresponding diagram is vir tual ly the same as the line 4 of Fig. 1, r e -  
fer r ing to a plate with c i rcu la r  flaws [13]. 

With e~ = 0.33, we get 

/ :  = 0.436 ]/'~, /: = 0.646 Va, /~ = 0.242 Va  

In this case vir tual ly the same diagram is obtained as for the flaw considered in Section 2, 2b. 

Finally, in the case  e~ = 1, (3.7)gives 

/ :  = 0.496 Va, 12 = 0.505 Va, [a = 0.483 ~fa 

which is vir tually the same as the diagram for a plate with a c rack  (curve 1 of Fig. 1), i.e.,  the hole no 
longer ser ious ly  influences the process  of c rack  development. 

L I T E R A T U R E  C I T E D  

1. M . L .  Will iams, "On the s t r e ss  distribution at the base  of a s tat ionary crack," J. Appl. Mech., 2_~4, 
No. 1 (1957). 

2. G . R .  Irwin, F rac tu re ,  Hanbuch Physik, Bd: 6, Springer,  Berl in (1958). 
3. G . I .  Barenblatt ,  "Mathematical  theory  of equilibrium cracks  appearing under bri t t le  f rac ture ,"  

PMTF (J. Appl. Mech. and Teeh. Phys.) ,  No. 4 (1961). 
4. G . C .  Sih, P. C. Par i s ,  and F. Erdogan, "Crack- t ip  s t r e ss  - intensity factors  for plane extension and 

plate bending problems,"  Trans .  ASME, Ser. E. J. Appl. Mech., ~ No. 2 (1962). 
5. V . V .  Panasyuk, Limiting Equil ibrium of Bri t t le  Bodies with Cracks [in Russian], Kiev, Naukova 

Dumka (1968). 

6. V . V .  Panasyuk, "On f rac tu re  of br i t t le  bodies under plane s t ress , "  Prikl .  Mekhan., 1, No. 9 (1965). 
7. V . V .  Panasyuk and E. V. Buina, "Cri t ica l  s t r e ss  d iagrams for bri t t le  bodies with sharp cavi ty-  

c rack  type flaws," F iz . -Khim.  Mekhanika Materialov,  3, No. 5 (1967). 

451 



8. H . F .  Bueckner, "Some stress singularities and their computation by means of integral equations," in: 
"Boundary Problems in Differential Equations,"Univ. Wisconsin Press (1960), pp. 215-230. 

9. P .M.  Vitvitskii and M. Ya. Leonov, "Extension beyond the elastic limit of a plate with a circular 
hole," PMTF (J. Appl. Mech. and Tech. Phys.), No. 1 (1962). 

10. L . L .  Libatskii, "Application of singular integral equations for determining critical stresses in 
plates with cracks," Fiz.-Khim. Mekhanika Materialov, 1_, No. 4 (1965). 

11. A.G. Kurosh, Course of Higher Algebra [in Russian], Moscow, Gostekhizdat (1955). 
12. N.I. Muskhelishvili, Some Fundamental Problems in Mathematical Theory of Elasticity [in Russian], 

Moscow, AN SSSR (1954). 
13. L . L .  Libatskii, "On plotting strength diagrams for a brittle body containing elliptic flaws," Fiz.- 

Khim. Mekhanika Materialov, 5, No. 3 (1969). 

452 


